

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE,

ELIZADE UNIVERSITY,

MTH 203 - LINEAR ALGEBRA I.

FIRST SEMESTER EXAMINATION 2019.

NSTRUCTION: ANSWER ANY FOUR. TIME: 2 HOURS.

- Q1. (a) What do you understand by the term 'Vector Space.'
 - (b) Let V be the set of all ordered pairs of real numbers. If $a=(x_1,y_1)$ and $b=(x_2,y_2)$ are elements of V.

Write
$$a + b = (x_1 + x_2, y_1 + y_2)$$
, $\propto a = (0, \infty, y_1)$, $0 = (0, 0)$

and $-a = (-x_1, -y_1)$. Is V a vector space with respect to these definitions of linear operations? Give a detailed explanation of your answer.

- Q2. (a) Define Linearly dependent and linearly independent set of vectors.
 - (b) Determine whether or not $\{V_1, V_2, V_3, V_4\}$ is linearly independent , where

$$V_1 = (1,1,3), V_2 = (1,3,1), V_3 = (3,1,1), V_4 = (3,3,3).$$

(c) What do you understand by the following terms 'Linear combination' and 'Linear Span'?

Express U=(-1,2,0) as a linear combination of V_1 and V_2 given $V_1=(1,2,3)$,

$$V_2 = (1,0,2)$$

- (d) Show that $v_1=(1,1)$ and $v_2=(2,1)$ span \mathbb{R}^2 .
- Q3. (a) Define the term 'linear transformation'.

For the following linear transformations $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$,

Find a matrix A such that T(x) = Ax for all $x \in \mathbb{R}^n$

(i)
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
, $T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x - y \\ 3y \\ 4x + 5y \end{bmatrix}$

(ii)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 satisfying $T\begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 1\\-2 \end{bmatrix}$, $T\begin{bmatrix} 2\\3 \end{bmatrix} = \begin{bmatrix} -2\\5 \end{bmatrix}$

(b) Determine whether the following function is a linear transformation

 $T:\mathbb{R}^2 \to \mathbb{R}^2$ With $T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x^2 \\ y^2 \end{bmatrix}$ if not provide a counterexample to one of the properties.

Q4. (a) Suppose $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ is the linear transformation defined by

 $T\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{bmatrix} a \\ b+c \end{bmatrix} \quad \text{If P is the ordered basis } \begin{bmatrix} p_1,p_2,p_3 \end{bmatrix} \text{ and } Q \text{ is the ordered basis}$ $\begin{bmatrix} q_1,q_2 \end{bmatrix} \text{ where } p_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ p_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \ p_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \text{ and } q_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \ q_2 = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \text{ what is the matrix representation of T with respect to P and Q .}$

(b) Let $T:\mathbb{R}^3\to\mathbb{R}^3$ be defined by $T(a_1,a_2,a_3)=(3a_1+a_2,a_1+a_3,a_1-a_3)$ Consider the standard ordered basis $\{e_1,e_2,e_3\}$ with respect to this basis the coordinate vector of an element (a_1,a_2,a_3) is $\begin{pmatrix} a_1\\a_2\\a_3 \end{pmatrix}$. Find the matrix representation of T.

Q5. Let $\{e_i\}$ be the standard basis for \mathbb{R}^3 , and consider the basis $f_1=(1$,1 ,1)

$$f_2 = (1,1,0)$$
 and $f_3 = (1,0,0)$

- (a) Find the transition matrix P from $\{e_i\}$ to $\{f_i\}$.
- (b) Find the transition matrix Q from $\{f_i\}$ to $\{e_i\}$
- (c) Verify that $Q = P^{-1}$
- (d) Show that $[V]_f = P^{-1}[V]_e$ for any $V \in \mathbb{R}^3$
- (e) Define $T \in L(\mathbb{R}^3)$ by T(x, y, z) = (2y + z, x 4y, 3x)Show that $[T]_f = P^{-1}[T]_e P$.
- Q6. (a) When is a linear transformation said to be Homomorphism and Isomorphism?
 - (b) Consider the space $V=\mathbb{R}^2$ with basis vectors $V_1=(1,1)$ and $V_2=(-1,0)$. Let T be the linear operator on \mathbb{R}^2 define by T(x,y)=(4x-2y,2x+y). Find matrix of T relative to the given basis.
 - (c) Define 'BASIS'.

Find a basis for the vector space V spanned by vectors $w_1 = (1,1,0)$, $w_2 = (0,1,1)$, $w_3(2,3,1)$ and $w_4 = (1,1,1)$.